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Abstract

Medical image segmentation data inherently contain un-
certainty. This can stem from both imperfect image qual-
ity and variability in labeling preferences on ambiguous
pixels, which depend on annotator expertise and the clin-
ical context of the annotations. For instance, a boundary
pixel might be labeled as tumor in diagnosis to avoid under-
estimation of severity, but as normal tissue in radiotherapy
to prevent damage to sensitive structures. As segmentation
preferences vary across downstream applications, it is often
desirable for an image segmentation model to offer user-
adaptable predictions rather than a fixed output. While
prior uncertainty-aware and interactive methods offer adapt-
ability, they are inefficient at test time: uncertainty-aware
models require users to choose from numerous similar out-
puts, while interactive models demand significant user input
through click or box prompts to refine segmentation. To ad-
dress these challenges, we propose SPA, a new Segmentation
Preference Alignment framework that efficiently adapts to
diverse test-time preferences with minimal human interac-
tion. By presenting users with a select few, distinct seg-
mentation candidates that best capture uncertainties, it re-
duces the user workload to reach the preferred segmentation.
To accommodate user preference, we introduce a proba-
bilistic mechanism that leverages user feedback to adapt a
model’s segmentation preference. The proposed framework
is evaluated on several medical image segmentation tasks:
color fundus images, lung lesion and kidney CT scans, MRI
scans of brain and prostate. SPA shows 1) a significant
reduction in user time and effort compared to existing in-
teractive segmentation approaches, 2) strong adaptability
based on human feedback, and 3) state-of-the-art image seg-
mentation performance across different imaging modalities
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and semantic labels. Our code is publicly available here:
https://github.com/SuperMedIntel/SPA.

1. Introduction

Deep learning-based medical image segmentation has
achieved remarkable progress over the past decade [5, 26,
30]. However, existing approaches often fail when applied
to real-world clinical scenarios. A critical challenge is how
to handle the inherent uncertainties in medical images [12].
A single medical image may have multiple different valid
segmentation results, depending on the labeling criteria for
a specific medical context. For example, in glioma detec-
tion from brain CT scans, it is often preferred to include
surrounding tissue rather than risk missing part of the tumor
[2]. In contrast, in radiation therapy for low-grade glioma,
undersegmentation is preferred to protect sensitive brain tis-
sue from excessive radiation damage [25]. Therefore, it is
essential to develop adaptive methodologies that align seg-
mentation uncertainties with specific labeling preferences
for different clinical needs.

Existing uncertainty-aware approaches [3, 16, 21, 27]
represent segmentation uncertainty to users by generating
numerous stochastic predictions (Fig. 1 (a)). However, users
often have to carefully choose from countless similar-looking
candidates, making the process time-consuming. Further-
more, since these models cannot incorporate human feed-
back for adjustments, there is a risk that none of the predic-
tions be satisfying.

Incorporating human feedback into segmentation, often
in the form of visual prompts (such as clicks and bounding
boxes) has shown promise [6, 17, 23, 29]. However, most
such interactive segmentation approaches do not incorporate
uncertainty. Additionally, existing visual prompts are often
cumbersome to attain in the real world, as they require pixel-
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Figure 1. (a) Existing uncertainty-aware models require users to choose from numerous similar-looking candidates, making the process
labor-intensive and time-consuming. (b) Interactive segmentation models lack the ability to incorporate image uncertainty and rely heavily
on pixel-level user inputs, which require a substantial amount of time and effort. (c) Our uncertainty-aware interactive segmentation model,
SPA, efficiently achieves segmentations whose decisions on uncertain pixels are aligned with users preferences. This is achieved by modeling
uncertainties and human interactions. At inference time, users are presented with one recommended prediction and a few representative
segmentations that capture uncertainty, allowing users to select the one best aligned with their clinical needs. If the user is unsatisfied
with the recommended prediction, the model learns from the users’ selections, adapts itself, and presents users a new set of representative
segmentations. Our approach minimizes user interactions and eliminates the need for painstaking pixel-wise adjustments compared to

conventional interactive segmentation models.

level interaction input from a user (Fig. | (b)).

To address the above challenges, we propose to present
users a small number of distinct segmentations to repre-
sent uncertainty. It allows users to select their preferred
option, simplifying interactive refinement into a straightfor-
ward multiple-choice selection. In this paper, we introduce
SPA, a new approach for efficient Segmentation Preference
Alignment with uncertainty in medical image segmentation
(Fig. 1). SPA presents image uncertainties by generating
multiple segmentations. Instead of providing users with
numerous similar-looking predictions as in conventional
uncertainty-aware segmentations, our model offers one rec-
ommended prediction and four representative segmentation
candidates per iteration. Once the user selects an option,
SPA rapidly adapts through iterative refinement, aligning
efficiently with the user’s segmentation preference in only a
few iterations. Our experiment demonstrates that a user can
segment 35% more images with 39% fewer iterations com-
pared to previous interactive models. This highlights SPA’s
potential for real-world clinical applications. In summary,
our contributions are:

* We introduce SPA, a new segmentation framework that
can align to users’ decision preferences toward ambigu-
ous/uncertain pixels at inference time. Such preferences
often vary with clinical contexts, which existing segmen-

tation models cannot adapt to efficiently.

* We propose to model uncertainties in pixel-wise predic-
tions under diverse preferences as a parameterized latent
distribution. This modeling enables rapid adaptation to
user preferences with minimal iterations at inference time.

* We develop a multi-choice interaction mechanism to re-
ceive user preferences at inference time, providing a more
friendly and effortless user experience than existing works.

* We compare SPA with deterministic, uncertainty-aware,
and interactive SOTA methods. SPA achieves superior
results measured by Dice Score for three multi-clinician
annotated datasets (REFUGE2, LIDC-IDRI and QUBIQ).
SPA also consistently outperforms interactive methods in
terms of requiring fewer rounds of user interactions.

2. Related Work

Uncertainty-aware Medical Segmentation Uncertainty in
medical images cannot be reduced by adding more data or
using more complex models [18]. Techniques such as model
ensembling, label sampling [14], and multi-head strategies
[10] attempt to address this uncertainty by generating a range
of potential predictions that reflect different user preferences
[13, 35]. Probabilistic segmentation methods, including
ProbUNet [19], PhiSeg [3], CM-Net [33] and MRNet [15]
explicitly model the posterior distribution of parameters
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Figure 2. Overall framework of SPA. The inference process comprises of two steps: Preference-aware Segmentation and Preference
Adaptation with Human Feedback. At iteration j, SPA takes the input image x, an interaction embedding el ), and latent variables {zn(J ) W,
drawn from the preference distribution pm( ) to generate N segmentation predictions. These predictions are then combined into an
aggregated preference aware prediction yapp<j ). If the user is not satisfied with yapp<j ), SPA generates K representative segmentation

candidates {rx @ }4_, in the adaptation step. The user selects the preferred segmentation candidate ro9. The preference distribution is

then updated to p(J (2)

or predictions to capture uncertainty. However, these ap-
proaches often generate multiple predictions, requiring users
to review each individually. Moreover, the predictions may
not perfectly match the specific clinical context, and some
techniques rely on prior knowledge of the expertise of a
clinician, complicating adoption into clinical practice. In
contrast, a more efficient approach is to incorporate human
interactions, allowing users to refine segmentations through
direct interaction to better align with the clinical context.
Interactive Medical Segmentation Interactive segmenta-
tion is an iterative process where automated segmentation
results are refined through user input until they reach a de-
sired output. Previous methods [17, 28, 31] have modified
predictions based on user interaction at the pixel level, with
some achieving success in the medical domain [8, 24, 32, 34].
Howeyver, these interactive models often do not address the
inherent uncertainty in medical images. Additionally, they
may require numerous iterations to align with the user pref-
erence for a specific clinical context, given the existence of
multiple valid segmentations. An interactive model capable
of incorporating image uncertainties and learning from user
interactions would reduce the number of iterations required
to achieve a desired result.

3. Methodology

3.1. Model user preferences as latent distributions

We assume that each user’s decisions on uncer-
tain/ambiguous pixels, based on their preference and

z) based on this choice. This process iterates until the segmentation meets clinical satisfaction.

stemming from different medical contexts, can be modeled
as i.i.d. samples drawn from a parameterized distribution.
To represent this user preferences for different clinical
contexts, we model this preference distribution py(z) as a
mixture of M Gaussian distributions:

M
z) = Z TN
m=1

where N (2 | pm,02,) denotes the Gaussmn component
for user m, with mean /1, and variance o2,. The mixture
weights 7, satisfy m,, > 0 and Z _1T™m = 1. Each
component in this mixture model reflects a specific user seg-
mentation preference, enabling the framework to generate
segmentation predictions that capture discrepancies across
users. In our segmentation framework, z ~ pg(z) is im-
plemented as a conditioning signal injected into a neural
network, predicating the subtle preference-dependent vari-
ability in segmentation outputs.

Modeling user preferences as parameterized distributions
is highly adaptable, as the distribution pg(z) can be itera-
tively updated via maximum likelihood based on new obser-
vations of user interactions at inference time '

We integrate the preference distribution py(z) into the
segmentation workflow, as follows. In each iteration, we
sample latent variables {z,, }\_, from py(z) to capture vari-

(z |Mm703@) (1)

'We provide a theoretical proof in the appendix to demonstrate that,
given sufficient interactions from a specific user u, the preference distribu-
tion py () will converge to the user’s personalized distribution N (p1u, 02).



ations under user preferences *. During training, the model
learns pp(z) through user feedback simulated from anno-
tated segmentations from multiple users. At inference, the
model can efficiently adapt to user preferences by estimating
the maximum likelihood based on the feedback of a user.

3.2. Overall Workflow

We propose SPA, which learns to model human preferences
by preference distribution py(z) during training, enabling
it to efficiently model new user preferences at inference
through interaction. Our framework also simplifies and im-
proves the robustness of interaction by replacing pixel-level
clicking with multi-choice selection.

Formally, our goal is to learn a general function f(-, )
that can adapt to different user preferences u’s through an
interaction process: y = f(x,1y), where x € REXWxC
is the input image, and r,, reflects human interaction. The
training details are provided in Section 3.5 and Algorithm 1.

Specifically, our SPA framework consists of two main
modules (Fig. 2): Preference-aware Segmentation (Section
3.3) and Preference Adaption with Human Feedback (Sec-
tion 3.4). Our Preference-aware Segmentation generates
multiple valid segmentations to represent image uncertainty
(oftentimes aleatoric) and the Preference Adaption with Hu-
man Feedback aligns these segmentations iteratively with
specific user preferences.

In inference, as shown in the upper part of Fig. 2, given
a raw image X, Preference-aware Segmentation generates
N segmentation predictions {y, ) }N_,, conditioned by the

interaction embedding e(] ) representing the user selection,
and latent variables {z,?)}\_, sampled from the prefer-
ence distribution péj ) (z) atiteration j. We use the user’s first
point prompt to produce €2 and pJ(z) for the initialization.
Predictions {y,)}N_, reflect uncertainty from individual
subtle preferences, which is controlled by z, ). These pre-
dictions are combined into one aggregated preference-aware
prediction yapp(j ) and K Representative Segmentation Can-
didates {r,) }I_ . If the user approves yapp 7, it will be
used as the final segmentation and the iteration ends. Oth-
erwise, the framework uses the Preference Adaption with
Human Feedback step for further refinement, as shown in the
lower part of Fig. 2: The user then selects the segmentation

ro7) that best aligns with their preference. The preference
dlstnbutlon p(j )( ) is further updated to p(J i )( ) based on
this feedback. This iterative process continues until the user
is satisfied with the segmentation.

2Preliminary experiments with MRNet [15] given in the appendix sug-
gest that while segmentation performance varies between users, each user
demonstrates consistent results. These observations indicate that model-
ing interaction behavior can effectively learn user preferences, thereby
improving modeling efficiency.

3.3. Preference-aware Segmentation

As shown in the upper part of Fig. 2, our Preference-aware
Segmentation step involves an image encoder and a mask
decoder. Given an input image x € R¥XWXC we first
obtain a general image embedding e, € REX?*F for
iteration j, where L represents the output channels and P
is the Vision Transformer (ViT) patch size. This embed-
ding is generated using a pre-trained ViT [11]. Additionally,
we sample N preference conditions {z,)}_; from the
preference distribution p(j )( ). Each z,0) € REXF*F
is concatenated with the general image embedding e, ),
and then processed through three convolutional layers and
ReLU activations to produce a set of preference-aware image
embeddings {e,, ) }N_,, where each e, () € REX %X #

We then employ a mask decoder to predict segmentation

masks {y," )}N | from {e,_ )}, and the interaction

embedding e& (Section 3.4). The decoder follows the same

architecture as SAM [17]. The final preference-aware pre-
diction is aggregated as yapp ) = 1¢.5 (% 25:1 yn(j)>.

3.4. Preference Adaption with Human Feedback

Receiving user’s choice as preference. Beyond yapp(j ),
our model also provides K Representative Segmentation
Candidates {r, ")}/ | for further selection, as shown in
the lower part of Fig. 2. These candidates reflect distinct
possible ways to adapt the prediction. To create {ry /) } 5,
K-means clustering is applied to the predictions {y, ) }N_,.
Each cluster produces a representative segmentation can-
didate r) € {r}E | as the centroid of the cluster.
We then highlight the pixel-wise differences { Ay, (@YK ]
between yapp( 7) and rk( 7 to the users. The positive and
negative differences are represented in different colors for the
convenience of selection. The users then pick their preferred
Ay (), which determines the corresponding representative
segmentatlon candidate ry 7). The r,?) is then sent into
the interaction encoder mapping into a L-dimensional feed-
back embedding e,, (Fig. 2). We use SAM prompt encoder,
including its point and mask branches, as our interaction
encoder, allowing it to accept both point and mask inputs.

Updating preference distribution. Given the interac-
tion embedding e,(f ), the preference distribution pé )( )

will be updated to p(]+ )( )

{(/f”” fn(ﬁ_l) (JH))}M 1- Specifically, since obtain-

ing ground-truth embedding samples directly from a given
mask is challenging, we replace the analytically updated
GMMs with a neural network-based predictor, that we call
the Preference Distribution Generator. It adaptively con-
structs GMMs by predicting their parameters 6 based on
human feedback e(J ). This approach employs amortized
inference to efficiently estimate GMM parameters. Given

e&j ), we use six forward layers to jointly predict u%) and

with parameters 0 =



Algorithm 1: SPA Training Process

Input: Image x, user-preferred representative
segmentation candidate ry
Output: Preference-aware Segmentation yapp
/+ Definitions */
Preference Distribution Generator: Ep, ()
generating {(ftm, 02, Tm ) }M_; to construct py;
Interaction Encoder: E;(-); Number of samples: N;
Number of representative segmentation candidates:
K;
Function GenMask (ex, pp, €,,) :
Sample n embeddings: z,, ~ pg, then
ex, = ReLU(Conv(ex @ zy));
¥n = Decoder(ex, , €,);
Yapp = 1o5 (% ZnNzl Yn>;
| return yapp, {yn}n-1;
*+ Training Loop */
or t = [ to MAX_TRAINING_UPDATES do
Initialize y, pg, ry, as described in Section 3.2
for j = 1 to MAX_USER_ITERATIONS do
Extract: ex = ViT(x), e, = Er(ry);
Call yg‘}i)p,_ = GenMask(ex, Py, €u);
/+ Update Preference
Distribution Generator */

=~

. ’
Update mean and variance: 6, ., =

9#771 30m + Oévé')pm, 50m ECE (y(a):)il;ﬂ Y);
Compute GMM responsibilities (E-step):
TP (Ym0,

gl = M ;
m >om=1 TmP(Ylpm,02)’
Update GMM weights:
O, = Or,, + Vo, Lyse(Th, Tm);

Call yapp, =
GenMask(ex, pg(H;mm” ; H;rm)7 €u)s
/* Segmentation Update */
Update segmentation and interaction
encoders:
Q/PSeg - 0PS€9 + avePSegLCE(ygng7 y)’

05, =0, + Ve, Lce(Yipp.y):

N
Callyln  {yn},—i =

GenMask(el, ps(0
/* Simulate User Selection for
the Next Iteration */
Get K Representative Candidates:
{richisy = KMeans({yy'};, );
Select preferred representative candidate:
ry = arg miny, ||rk - ygrll)pHQ;

’ ’
/
) el)s
Hm;0m? 7T7n)7 u/?

om@) from a 2m-length vector, and use another six forward
layers to predict 7715,{) (Fig. 2 lower part). The predictor of

uﬁ,{) and o,,, ) is updated by the backpropagation from the
final supervision y, while the predictor of w%) is separately

updated by the supervision from ground-truth mcr':,T(j )

given u%) s O’m(j ), and y, we can get the analytical solution
for 71'5,],',) from the GMM E-step (Algorithm 1).
Segmentations with iteratively aligned preference. In
the next iteration, new latent variables {z,UTYD}N_ are
sampled from the updated preference distribution péj 1) (2)
and undergo Preference-aware Segmentation together with
the input image x and interaction embedding egj ),
Inference across input images. For each input image x, r,,
is initialized as a user point prompt (similar to SAM), and

an initial py(z) is predicted based on 7.

, since

3.5. Training Details

In training, for each x, we initialize the ground truth y as a
stochastic combination of collected multi-rater labels: y =
105 (O A xY), where A represents the weights uniformly
sampled from [0, 1] and Y denotes the set of user annotations.
We then simulate user interaction and iteratively update the

distribution generator to produce péj ) (z) from r,, and the

segmentation model to predict {y,)}_, based on pé] )(2).
The initial r,, is simulated by randomly selecting a point
from the ground truth. Supervision is then applied to ensure
that the final jointly produced aggregation yapp(j ) matches

ground truth y. The full training pipeline is in Algorithm 1.

4. Experiment

We conducted experiments to validate the effectiveness of
SPA across seven uncertainty segmentation tasks represented
by multi-clinician, using data from three medical imaging
modalities: color fundus images, lung lesion and kidney
CT scans, brain and prostate MRI scans. SPA consistently
achieves SOTA performance compared to deterministic,
uncertainty-aware, and interactive models. Notably, SPA
outperforms interactive models with significantly fewer iter-
ations and it demonstrates strong generalization on unseen
users. Human evaluation further shows that SPA requires
less time and fewer interactions to meet human expectations.
Our results also show that predictions increasingly align with
selected users while diverging from those excluded. Abla-
tion studies highlight the necessity of each component for
optimal segmentation. Additional analysis of representative
segmentation candidates’ similarities across iterations and
prediction changes after each interaction are detailed in the
appendix.

4.1. Dataset

REFUGE2 benchmark [9] is a publicly available fundus
image dataset for glaucoma analysis, including optic cup
segmentation. REFUGE2 includes annotations from seven



Table 1. SPA Outperforms the SOTA in Dice Score (%). We compared deterministic, uncertainty-aware, and interactive models with
Dice Score as the metric. SAM-series models use clicks for interaction, while SAM-U uses bounding boxes. SPA, with its multi-choice
representative segmentation candidate mechanism, consistently outperforms the other models for the seven tasks. 1-Iter and 3-Iter indicate

performance after one and three iterations, respectively.

Methods Category | 1-Iter 3-Iter | REFUGE2 LIDC BrainTumor Prostatel Prostate2 BrainGrowth Kidney  Ave
UNet v 68.94 62.99 87.30 83.89 77.22 62.02 82.40  74.96
TransUNet Det v 80.83 64.09 90.14 83.35 68.34 86.58 5299  75.19
SwinUNet v 78.67 59.45 91.23 82.02 74.19 74.88 69.41  75.69
Ensemble UNet v 70.75 63.84 90.56 85.27 79.07 71.69 89.30  78.64
ProbUnet v 68.93 48.52 89.02 72.13 66.84 75.59 75.73  70.96
LS-Unet Unc v 73.32 62.05 90.89 87.92 81.59 85.63 7231  79.10
MH-Unet v 72.33 62.60 86.74 87.03 75.61 83.54 7344 77.32
MRNet v 80.56 63.29 85.84 87.55 70.82 84.41 61.30  76.25
SAM v 82.59 66.68 91.55 92.82 77.04 86.63 8572  83.29
MedSAM Int v 82.34 68.42 92.67 89.69 74.70 85.91 78.02  81.68
MSA v 83.03 66.88 88.16 89.06 68.94 80.62 2529  71.71
SAM-U V1 v 82.45 62.24 92.67 81.46 66.56 87.79 89.50  80.38
SAM-U V2 Unc-Int v 80.66 64.82 93.11 91.89 7291 87.51 90.74  83.09
SPA v 83.47 88.07 94.29 93.12 83.34 88.14 94.08  89.22
SAM v 82.61 66.71 92.14 92.72 77.54 86.58 9043  84.10
MedSAM Int v 82.13 68.45 93.26 90.05 73.81 86.09 79.88  81.95
MSA v 83.08 66.87 91.25 90.22 71.34 81.87 46.76 7591
SAM-U V1 v 82.10 62.84 92.31 81.79 66.74 87.84 89.24  80.40
SAM-U V2 Unc-Int v 80.54 65.44 92.40 90.00 73.17 87.87 91.35 8296
SPA v 85.42 88.56 94.31 92.97 84.05 88.18 94.26  89.68

ophthalmologists, each with an average of eight years of
experience. It contains 400 training and 400 test images.
LIDC-IDRI benchmark [1, 7] originally consisted of 3D
lung CT scans with semantic segmentations of possible lung
abnormalities, annotated by four radiologists. We use a pre-
processed version from [20] of 15,096 2D CT images. After
an 80-20 train-test split, the training and test datasets contain
12,077 and 3,019 images, respectively.

QUBIQ benchmark [22] consists of one MRI brain tumor
task (three annotations, 28 training cases, 4 testing cases);
two MRI prostate tasks (six annotations, 48 training cases,
7 testing cases); one MRI brain-growth task (seven annota-
tions, 34 training cases, 5 testing cases); and one CT kidney
task (three annotations, 20 training cases, 4 testing cases).

4.2. Implementation Details

Our network was implemented using PyTorch v1.12 and
trained/tested on an RTX A4000 with 16GB of memory.
During training, we used the Adam optimizer with an initial
learning rate of 1e~* and adjusted it using StepLR strategy.
L = 256 features were extracted to generate feature em-
beddings and N = 48 latent variables were sampled from
the preference distribution p((f ) (z), which was modeled with
M = 16 Gaussian components. We generated K = 4 rep-
resentative segmentation candidates to allow multi-choice
selection and set M AX _USER_ITERATIONS to 6. It
takes 0.2 second per iteration to generate the prediction and
the representative segmentation candidates, acceptable for
human-in-the-loop settings.

We used SAM-ViT/B as the segmentation backbone. Ad-
ditional implementation details are provided in the appendix.
Deterministic segmentation methods with multiple annota-
tions were trained with majority vote labels. For SAM-series

interactive models, click or bounding box prompts were
uniformly generated based on the original model settings.

4.3. Experimental Results

4.3.1. Performance Comparison with SOTA Methods

To demonstrate the advantages of SPA, we compared it
with SOTA methods, classified into deterministic methods
(UNet [26], TransUNet [5], SwinUNet [4]), uncertainty-
aware methods (Ensemble UNet, ProbUnet [19], LS-Unet
[14], MH-Unet [10], MRNet [15]), and interactive methods
(SAM [17], MedSAM [24], MSA [32]). We also compared
SPA with SAM-U [8], an uncertainty-interactive method
that simply introduces uncertainty by generating multiple
prompts. SAM-U was evaluated using both SAM and Med-
SAM backbones with bounding boxes as the interaction
strategy, named SAM-U V1 and SAM-U V2, respectively.
Other SAM-series methods relied on user clicks for interac-
tions. Results for interactive models were reported after one
and three iterations.

SPA consistently outperforms all methods, achieving an
average Dice Score of 89.68% after three iterations. Ta-
ble 1 provides a quantitative comparison using Dice Score
as the metric. The improvement is particularly notable for
the LIDC segmentation task, where SPA improves on cur-
rent SOTA methods by 20%. Even after one iteration, SPA
demonstrates superior performance relative to the other meth-
ods. Fig. 3 shows visual comparisons between SPA and other
SOTA methods, presenting segmentations after six iterations
for the interactive models. The results qualitatively indicate
that the segmentations predicted by SPA align more closely
with the ground truth, especially in the boundary regions.
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Figure 3. SPA Shows Superior Segmentation Visualization. Visual comparison of segmentation results with deterministic, uncertainty-
aware, and interactive models after six iterations. SPA provides better adaptability, particularly at boundary regions.
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4.3.2. Efficiency Analysis on Different Interactive Models

We conducted an efficiency analysis to quantify the number
of iterations required to reach specific Dice Scores, with a
maximum of six iterations. Models that failed to reach the
target Dice Score within the limit were assigned an iteration
count of ten. The failure rate is provided in the appendix.
Our proposed method, SPA, consistently has lower failure
rates and requires fewer iterations to achieve superior seg-
mentation performance compared to other models.

SPA outperforms all other interactive models in terms
of interaction efficiency, as shown in Fig. 4. On the
REFUGE?2 dataset, it requires fewer than five iterations to
achieve a Dice Score of 87%, whereas SAM-U V2 needs

Prostate02 Kidney

1.8

N WA U oo N

75 75 78 90 89 92
Dice Score (%)
Figure 4. SPA Demonstrates Extraordinary Efficiency. Efficiency analysis comparing the average number of iterations required to reach
specific Dice Scores across interactive models. Models that failed to reach the target Dice Score within six iterations are assigned an iteration

count of ten. Failure rate is provided in the appendix. SPA consistently achieves lower failure rates and requires fewer iterations.

5.6 iterations to reach a Dice Score of just 84%. In the
LIDC dataset, SPA achieves 75% Dice Score with only 2.7
iterations on average, while other models typically require
four or more iterations. Similarly, on the Kidney dataset,
SPA reaches a Dice Score of 92% with 3.2 iterations, while
other SAM-series models often need four to ten iterations.
Notably, SPA reaches a Dice Score of 95% within eight it-
erations, but other models struggle to converge within the
ten-iteration limit.

SPA shows generalization and robustness to unseen pref-
erences. To show this, we conducted a leave-one-user-out
experiment three times, each time leaving a different user out
during the training phase. The reported results are averaged



Table 2. SPA Demonstrates Strong Prediction Alignment with Individual Users. Alignment analysis by Dice Score (%) on the
REFUGE2 optic cup segmentation task. The ground truth combines annotations from Clinicians 2, 4, 5, 6, and 7, excluding Clinicians 1
and 3. Predictions are compared with individual clinicians (columns) across interaction iterations (rows). The predictions show increasing

alignment with included clinicians and divergence from excluded clinicians.

Iteration Clinician 1 Clinician 2 Clinician 3 Clinician 4 Clinician 5 Clinician 6 Clinician 7
1 75.02 78.92 83.98 78.25 80.81 84.86 59.35
2 74.03 (-1.32%) 80.58 (+2.10%) 84.03 (+0.05%) 78.88 (+0.81%) 81.92 (+1.37%) 85.62 (+0.90%) 60.43 (+1.82%)
3 73.61 (-1.88%) 80.88 (+2.48%) 83.68 (-0.36%) 79.16 (+1.16%) 82.17 (+1.68%) 85.87 (+1.19%) 60.79 (+2.43%)
4 73.35(-2.23%) 81.29 (+3.00%) 83.40 (-0.69%) 79.19 (+1.20%) 82.32 (+1.87%) 86.06 (+1.41%) 61.06 (+2.88%)
5 73.27 (-2.33%) 81.35 (+3.08%) 83.32 (-0.79%) 79.17 (+1.18%) 82.48 (+2.07%) 85.90 (+1.23%) 61.14 (+3.02%)
6 73.15 (-2.49%) 81.54 (+3.32%) 83.30 (-0.81%) 79.23 (+1.25%) 82.65 (+2.28%) 86.03 (+1.38%) 61.34 (+3.35%)

across these three runs, while individual user statistics are
provided in the appendix. On REFUGE?2 optic cup segmen-
tation task, SPA achieves a 75% Dice Score in an average
of 3.01 iterations, whereas other models require more than
3.6 iterations to reach similar accuracy. For a Dice Score of
84%, SPA requires an average of 5.02 iterations, surpassing
the second-best model, MedSAM, by 0.94 iterations. In
addition, SPA is transferable between images for the same
user. The Dice Score improves from 91.68% to 92.43% on
Kidney dataset by using user-adapted GMM parameters.
SPA’s improved efficiency is further substantiated with
a human user study. We invited five medical profession-
als, each with over five years of graduate-level expertise,
to annotate 100 fundus images from the REFUGE2 dataset.
Across all annotators, SPA consistently required fewer inter-
actions and less time compared to MedSAM. For example,
one individual required an average of 6.62 seconds and 4.33
iterations per image with MedSAM, but only 4.34 seconds
and 2.46 iterations with SPA. Another annotator took 7.40
seconds and 5.60 iterations per image with MedSAM, but
just 4.77 seconds and 3.58 iterations with SPA. Similarly, for
the remaining annotators, SPA required an average of 4.56,
5.03, and 4.82 seconds per image, compared to 6.91, 8.04,
and 7.60 seconds with MedSAM. This significant reduc-
tion in both time and interactions highlights SPA’s superior
efficiency. User study details are provided in the appendix.

4.3.3. Prediction Alignment with Clinician Feedback in
Model Adaptation

Table 2 shows prediction alignment results for optic cup
segmentation on the REFUGE?2 dataset, comparing SPA’s
predictions with individual clinicians’ annotations after each
iteration. In this case, the ground truth is defined as the
weighted average of annotations from Clinicians 2, 4, 5, 6,
and 7, excluding Clinicians 1 and 3. After each interaction,
the Dice Scores for the included clinicians consistently im-
prove, indicating that SPA is adapting to the desired context.
For example, Clinician 2’s score increases from 78.92% to
81.54% (+3.32%), with similar positive trends for Clinicians
4,5,6,and 7 (+ 1.25%, +2.28%, +1.38%, and +3.35%, re-
spectively). In contrast, the Dice Scores for the excluded
clinicians, such as Clinicians 1 and 3, show a consistent

decline (-2.49% and -0.81%), indicating that the model is
effectively excluding irrelevant clinicians. This multi-choice-
based refinement demonstrates SPA’s ability to align predic-
tions with the included clinicians while excluding those not
part of the ground truth. Visualization of this alignment is
provided in the appendix.

4.3.4. Ablation Study

In this section, we conducted an ablation study on key com-
ponents of SPA, including random sampling from the pref-
erence distribution (Random Gaussian), updating the mean
and variance (Gaussian), and adjusting distribution weights
(Mixture Gaussian). Table 3 shows the ablation results, with
segmentation performance evaluated by Dice Score on the
REFUGE2 and Kidney datasets after three iterations.

When only randomly sampling is used without calibrating
the mean, variance, or weight of the preference distribution,
the Dice Scores are 80.29% for REFUGE2 and 90.05% for
the Kidney dataset. Training the mean and variance improves
the scores to 84.12% and 92.06%, respectively. Addition-
ally, training the distribution weights alone raises the scores
to 82.87% for REFUGE2 and 92.29% for Kidney. Finally,
combining all three components which results to calibrating
distribution mean, variance, and weight to form the prefer-
ence distribution yields the highest performance, with Dice
Scores of 85.42% for REFUGE?2 and 94.26% for the Kidney
dataset. This highlights the complementary benefits of each
component in achieving optimal segmentation performance.

Table 3. Effectiveness of Network Modules in SPA. Ablation
study evaluating the impact of network components on segmenta-
tion performance for the REFUGE2 and Kidney datasets after three
iterations. The table compares random sampling (Random Gaus-
sian), updating the mean and variance (Gaussian), and updating
distribution weights (Mixture Gaussian). Combining all modules
achieves the highest Dice Scores, highlighting their complementary
benefits in optimizing segmentation performance.

Random Gaussian  Gaussian ~ Mixture Gaussian REFUGE2 Kidney
v 80.29 90.05
v v 84.12 92.06
v v 82.87 92.29
v v v 85.42 94.26




5. Conclusion

In this work, we introduce SPA, a novel segmentation frame-
work that efficiently adapts to user preferences with mini-
mal human effort. By offering users multi-choice options
based on image uncertainties at interactions, SPA reduces
user workload and ensures preference-specific predictions.
The proposed preference distribution allows the model to
dynamically adapt to user feedback during inference, ac-
celerating convergence and enhancing interaction efficiency.
Reported experiments show that SPA outperforms deter-
ministic, uncertainty-aware, and interactive SOTA models,
demonstrating strong adaptability in different clinical con-
texts while requiring significantly less time and effort. These
results highlight SPA’s potential to contribute to improving
clinical workflows in real-world medical applications.
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